TW / Global Website

Mart > IP Mart

Digital Down Converter with configurable Decimation Filter By Quotes None 250 MHz None  
DDC is a complex-valued digital down-converter with a configurable number of decimation stages.  The design is ideal for high sample-rate applications and permits a digital input signal to be mixed- down and re-sampled at a lower data rate.  The DDC is suitable for the down-conversion   of   any   digitally   modulated   signal   to   baseband   –   an essential step before digital processing. The DDC features a high-precision 16-bit DDS oscillator for the digital mixing stage.   This oscillator is fully programmable and offers excellent phase and frequency resolution.  The digital mixing stage  is a complex multiplier that allows  the mixing of both real and imaginary (I/Q) inputs.  If only real inputs are required, then the imaginary input (q_in) should be tied low. The output decimation stage features a configurable decimate-by-2N  poly-phase   filter   for   both   I   and   Q   channels.     Each   filter   stage   is   highly optimized to use only 12 multipliers while still achieving 80 dB of stop-band attenuation.   Application Compatible with any digital modulation scheme - e.g. QPSK, BPSK, QAM, WiMAX, WCDMA, COFDM etc. Conversion of IF signals to baseband frequencies for subsequent processing Digital I/Q Demodulators     Introduction
Binary PSK Demodulator By Quotes None 200 MHz None  
IP is a Binary-PSK demodulator based on a multiply-filter-divide architecture.   The design is robust and flexible and allows easy connectivity to an external  ADC. As the the carrier recovery circuit is open-loop, there is no feedback path or loop-filter to configure.  This results in an extremely simple circuit with a very fast carrier acquisition time.  The only requirement is that the user set the desired symbol period and a suitable threshold level for the bit decisions at the symbol decoder.  The other design parameters including carrier   frequency,   symbol   rate   and   sampling   frequency   should   be specified by the user before delivery of the IP Core 1 . The input data samples are 16-bit signed (2's complement) values that are synchronous with the system clock.  Input values are sampled on the rising edge of clk when en is high.   Application Robust, low bandwidth RF applications for small FPGA devices SRD and ISM band devices Medium to long-range telemetry Software radio Introduction
Rapid IO PHY in 65nm By Quotes 2.295 μm^2 25 MHz 65 nm  
The IP is designed for chips that perform high bandwidth data communication while operating at low power consumption. It can also be used in any serial interface where timing and electrical specification can be satisfied. This IP has four individual Transmitter (TX) and Receiver (RX) channels, and one common phase lock loop (PLL). Introduction
Oscillator - RC22MHz By Quotes None 22 MHz 180 nm  
The RC_OSC22M is a low power consumption internal Resistor/Capacitor oscillator with trimming operating frequency.  This OSC needs input Bandgap reference voltage to maintain stable operating frequency and decrease power supply effects.  The RC-oscillator cell is useful for applications that require an oscillator that utilizes non-external components and has a relaxed frequency tolerance.  An enable / disable mode is provided to disable the oscillator.  When the oscillator is in the disable mode, the output (CLK22M) goes to a logic level low.  It is processed using SMIC’s 0.35μm logic process with an operating supply voltage range of 2.0V ~ 5.5V and a junction temperature range of -40˚ ~ 125˚C. Introduction
10/100/1000 Ethernet Media Access Controller By Quotes None 125 MHz 130 nm  
The MAC-1G/MAC is a synthesizable HDL core of a high-speed LAN controller. It implements Carrier Sense  Multiple  Access  with  Collision  Detection  (CSMA/CD)  algorithms  defined  by  the  IEEE  802.3 standard for media access control over the 10Mbps, 100Mbps and 1Gbps Ethernet. Communication  with  an external  host  is implemented  via  a set  of Control  and Status  Registers  and the DMA controller for external shared RAM memory. For data transfers the MAC-1G/MAC operates as  a DMA master. It automatically fetches from transmit data buffers and stores receive data buffers into external RAM with minimum CPU intervention. The linked list management enables the use of various memory allocation schemes. There is an interface for external dual port RAMs serving as configurable FIFO memories and there are separate memories for transmit and receive processes. Using the FIFOs additionally isolates the MAC-1G/MAC from an external host and provides resolution in case of latency of an external bus.    Application Network Interface Cards (NICs)  Routers, switching hubs Introduction
JPEG Decoder By Quotes None 250 MHz 130 nm  
This JPEG Decoder IP core has been developed to be a complete standards compliant JPEG / MJPEG Hardware Decompressor / Decoder. When decoding JPEG images, pixel throughput can not be fixed for compressed JPEGs of arbitrary quality, as it depends on the compression ratio (bits needed to encode one pixel). To circumvent this limitation JPEG Decoder IP features a dual pixel component pipeline, allowing for greater decoding speeds.   Introduction
JPEG Encoder By Quotes None 250 MHz 130 nm  
This IP core has been developed to be a complete standards compliant JPEG / MJPEG Hardware Compressor / Encoder. The data interfaces in the JPEG Encoder IP Core (JPEGE) use the AXI industry standard. The Master I/O data interfaces use an AXI3 bus, forward compatible with AXI4 interconnects. In order to let you assess the properties of the on-the-fly selectable quality setting, please use the slider below the image in order to see the final compressed image and compression ratio. The JPEG Encoder IP Core has a real throughput of two compressed pixels every three clock cycles at any compression ratio for a chroma subsampling of 4:2:0. To calculate the throughput for your platform. Introduction
H.264 Encoder IP Core By Quotes None 150 MHz None  
This H.264 Encoder IP core has been developed to be the highest throughput standards compliant hardware H.264 video compressor.  The IP offers two encoder variants to meet the different targets of features.   The IP include 2 mode. H264E-I: H.264 encoder compliant with CAVLC 4:4:4 Intra Profile (all frames are keyframes)​         The IP core is smaller but yields less compression. It does not require external memory. H264E-P: H.264 encoder compliant with High 4:4:4 Predictive Profile:   The IP core is larger but offers a significantly better compression. Both share the same outstanding processing speed of more than 5.2 pixels encoded per cycle. The data interfaces in the H.264 Encoder IP Core use the AXI industry standard.  The Master I/O data interfaces use an AXI3 bus, forward compatible with AXI4 interconnects. Introduction
Video and Audio develop platform By Quotes None None None  
Single Chip Solution 32-bit RISC MCU SPI/UART/I2C/GPIO Video Process Engine Video DAC/Audio DAC USB 2.0 Video Scaler DDR4 Easy Integrated Customer’s Logic ​Application DVR and POS DVR ATM machine surveillance Home stay monitoring Multiple channel IP camera Introduction
Binary FSK Demodulator By Quotes None 200 MHz None  
This IP is a precision Binary-FSK Demodulator IP Core based on a non-coherent receiver design.  The demodulator is fully programmable, allowing   for   a   varied   range   of   symbol   rates   and   mark/space tone frequencies. Input data samples may be either complex or real for support of either passband or baseband signals.  The module allows easy connectivity to an external ADC with up to 16-bit signed input samples.   Applications: Short range telemetry Software radio Introduction
μIP Price Logic Gate Count Clock Rate Technology   Ratings

 3  4  5  6  7  8  9  10  11  12